Evaluates the MLE of the zero inflated Poisson (ZIP) distribtion. The PMF of the ZIP is as follows: $$ f\left(X=x\mid\alpha,\,\theta\right)=\begin{cases} \alpha+\left(1-\alpha\right)e^{-\theta}, & x=0\\ \left(1-\alpha\right)\frac{\theta^{x}e^{-\theta}}{x!}, & x=1,2\cdots, \end{cases} $$ where \(\alpha\in(0,1)\) denotes the probability of extra zeros and \(\theta>0\) is a Poisson parameter, which is also its mean and variance.
mle_zip (x, alpha, theta)
mle_zip gives the MLE along with standard error of the estimate and model selction measure AIC.
A vector of (non-negative integer) discrete values.
A vector of (non-negative integer) values, \(\theta>0\).
A vector of (non-negative integer) values, \(\alpha\in(0,1)\).
Muhammad Imran and M.H. Tahir.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir <mht@iub.edu.pk>.
The function allows to estimate the unknown parameter of the ZIP distribution with standard error of the estimate and model selection measure, the Akaike information criterion (AIC).
Beckett, S., Jee, J., Ncube, T., Pompilus, S., Washington, Q., Singh, A., & Pal, N. (2014). Zero-inflated Poisson (ZIP) distribution: Parameter estimation and applications to model data from natural calamities. Involve, a Journal of Mathematics, 7(6), 751-767.
mle_zibell, mle_zibellt
x <- data_sbirth
mle_zip (x, 0.2, 1.5)
Run the code above in your browser using DataLab